
Microsoft Dynamics POS Alpha SDK Boot Camp

Developer Session labs

The Developer Session labs will introduce you to the programming techniques that you need to
develop add-ins for Microsoft Dynamics POS.

The exercises in these labs start out simple to give you a feel for the add-in architecture, and then
develop in complexity. We hope that by the completion of these labs, you will be able to begin
developing your own add-ins that fully utilize the rich features of Microsoft Dynamics POS.

There are seven labs in the Developer Session:

Lab 1: Creating a basic add-in 9
Lab 2: User interface extension 1 15
Lab 3: User interface extension 2 33
Lab 4: Object model and data views 1 35
Lab 5: Object model and data views 2 41
Lab 6: Using taxes 49
Lab 7: Creating custom reports 55

Note
These labs use Microsoft Dynamics POS Alpha. Customizations based on this release
may need modifications to work with the final release of Microsoft Dynamics POS.

7

lab 1
Creating a basic add-in
There are six key parts to a basic Microsoft Dynamics POS add-in:

● The AddIn attribute that marks a class as an add-in

● A reference to the DLL that contains the Microsoft.Rms.AddInView.V300 namespace

● References to the Microsoft .NET 3.5 framework namespaces that provide the base
functionality for add-ins

● The add-in manifest file

● The installation location for the compiled add-in

● The pipeline segments cache and pipeline store cache

In his lab, you will learn how to use the above six key parts to create a basic add-in. At the end of
the lab, you will have a basic working add-in that displays the following dialog box when Microsoft
Dynamics POS starts.

Note
You can find a finished example of each lab in the Reference subfolder in each of the
lab folders in the SDKBootCamp folder on your desktop.

Throughout this document, you will be instructed to view these reference projects to
study finished code or to copy and paste infrastructure code that is either lengthy or
not directly related to the mechanics of writing a successful add-in.

Feel free to view these reference projects at any time. Note also that these projects
compile and can be deployed on your computer.

8 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Create the project
The following procedure walks you through creating a class library project for your add-in.

1. Run Microsoft Visual Studio 2008 as Administrator.

2. On the Filemenu, point to New, and then click Project.

3. In the Project types: pane in the New Project dialog box, expand Visual C#, clickWindows, and
then click Class Library in the Templates: pane.

4. In the Name: text area type, HappyHourDiscount.

5. Click the Browse button.

6. In the Project Location dialog box, navigate to C:\Documents and
Settings\yourusername\Desktop\SDKBootCamp\Session1_CreatingAnAddIn\Working.

7. Uncheck the Create directory for solution check box.

8. Click OK.

Create a basic add-in
By doing the procedures in this section, you will perform all the steps necessary to write code that
customizes Microsoft Dynamics POS. You will add the necessary references and using statements,
create a public class marked with the AddIn attribute, create an application manifest file suitable for
a basic add-in, implement an add-in view, and deploy your add-in by copying the appropriate files
to the installation directory and updating the pipeline segments cache and add-in store.

Add the necessary references
Microsoft Dynamics POS add-ins require the use of types in the System.AddIn and
Microsoft.Rms.AddInViews.V300 namespaces. The following steps walk you through adding these
references and inserting useful using statements.

1. On the Projectmenu, click Add Reference….

2. In the Add Reference dialog box, click the .NET tab.

3. Press and hold the Ctrl key and click System.AddIn, System.AddIn.Contract., and
System.Windows.Forms.

4. Click OK.

5. On the Projectmenu, click Add Reference….

6. In the Add Reference dialog box, click the Browse tab.

7. In the Add Reference dialog box, navigate to C:\Program Files\Microsoft Dynamics -
Point of Sale\AddInViews\.

8. SelectMicrosoft.Rms.AddInViews.V300.dll. Click OK.

9. Right-click on Class1.cs in Solution Explorer and click Rename. Rename Class1.cs to
PosAddIn.cs. If you are prompted to change all references, click Yes.

10. Open the PosAddIn.cs file and add the following using statements:

using System.AddIn;

using System.AddIn.Contract;

using System.Windows.Forms;

using Microsoft.Rms.AddInViews.V300;

using Microsoft.Rms.AddInViews.V300.ServiceModel;

Lab 1: Creating a basic add-in 9

Mark the add-in class with the AddIn attribute:
The AddIn attribute marks a class for discovery by Microsoft Dynamics POS. Classes marked with
the AddIn attribute must be made public, or they will not be discovered by POS and will therefore
not be loaded. In general, classes marked with the AddIn attribute will also be public and implement
an interface from the Microsoft.Rms.AddInViews.V300 namespace or a sub-namespace belonging
to it.

● In the PosAddIn.cs file, add the following line immediately above the definition of the
PosAddIn class:

[AddIn ("Happy Hour Add-in", Version=”1.0.0.0”)]

Note
When you define your own add-in classes, remember that classes marked with the
AddIn attribute must be public. Visual Studio 2008 does not mark as public classes that
you add by using the Projectmenu or Solution Explorer.

Create the manifest file
The manifest file is placed in the installation directory and is used by AddInUtil.exe to update the
pipeline segments cache and the add-in store.

Note
In the alpha version of Microsoft Dynamics POS, an incorrect manifest file can cause
your add-in not to load or create hard-to-find crashing bugs in your add-in.

1. In the Solution Explorer pane in the Visual Studio 2008 application window, right-click the
HappyHourDiscount node, click Add, then click New Item.

2. In the Categories pane in the Add New Item dialog box, click General.

3. In the Templates pane, select Application Manifest File.

4. In the Name text area, type HappyHourDiscount.manifest. Click Add.

5. Replace the contents of the HappyHourDiscount.manifest file with the following XML:

<?xml version="1.0" encoding="utf-8" ?>
<AddinManifest>
<AddinAssembly
assembly="HappyHourDiscount.dll"
implementedViews="Microsoft.Rms.AddInViews.V300.ServiceModel.IPosAddIn
"
namedPermissionSet="FullTrust"
/>
</AddinManifest>

10 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Modify PosAddIn to implement IPOSAddIn
Add-ins must implement the IPosAddIn interface. This interface has a single method,
SetPosApplication, which is called by Microsoft Dynamics POS to give the add-in a handle to the
running instance of POS. In general, classes marked with the AddIn attribute will also implement an
interface from the Microsoft.Rms.AddInViews.V300 namespace or a sub-namespace belonging to it.

1. Declare that PosAddIn implements IPosAddIn.

2. Create an instance member in PosAddIn of the type IPosApplication to store the application
handle to the running instance of Microsoft Dynamics POS. (Call it PosApp.)

3. Implement the IPosAddIn.SetPosApplicationmethod. Assign its posApplication parameter
to PosApp and then show a message box with the title “Happy Hour Add-in” that displays the
message, “Happy Hour Add-in has a handle to POS.”

4. Save your work. Then, on the Buildmenu, click Build Solution.

Deploy the add-in
To deploy an add-in, you must place the add-in DLL file and manifest file in an add-in specific folder

in the AddIns folder in the installation directory. For the Happy Hour Discount add-in,
HappyHourDiscount is a logical name for this directory and is used throughout the portion of this lab

that deals with the Happy Hour add-in.

Note
Throughout this lab you will be instructed to copy over both a DLL and a PDB file. The
PDB file contains information for the Visual Studio 2008 debugger and is necessary for
setting breakpoints and stepping through code. You will almost always deploy retail
builds to your customers’ computers, and will therefore only deploy DLL files, not PDB
files.

1. Create a folder called HappyHourDiscount in the C:\Program Files\Microsoft
Dynamics - Point of Sale\Addins\ folder.

2. Open the SDKBootCamp folder on the Desktop and navigate to the
Session1_CreatingAnAddIn\Working\HappyHourDiscount\bin\Debug subfolder.
Copy the HappyHourDiscount.dll file and HappyHourDiscount.pdb file from here to
C:\Program Files\Microsoft Dynamics - Point of
Sale\Addins\HappyHourDiscount\.

Note
Do not copy the Microsoft.Rms.AddInViews.dll file from your build directory to the
installation directory. Microsoft Dynamics POS uses the version of this file that exists
in the installation path.

3. Open the SDKBootCamp folder on the Desktop and navigate to the
Session1_CreatingAnAddIn\HappyHourDiscount subfolder. Copy the
HappyHourDiscount.manifest file from here to C:\Program Files\Microsoft
Dynamics - Point of Sale\Addins\HappyHourDiscount\.

4. On the Startmenu, point to All Programs, then point to Accessories, then right-click Command
Prompt, and then click Run as administrator.

5. At the command prompt, type:

%windir%\Microsoft.Net\Framework\V3.5\AddinUtil.exe -rebuild -PipelineRoot:"C:\Program
Files\Microsoft Dynamics - Point of Sale"

Note
For the purposes of this lab, you might consider leaving this command window open
so that you can use the command history to execute this command. Simply move the

Lab 1: Creating a basic add-in 11

focus to the window, press the up arrow key until the command appears, and press
Enter.

Because this is an alpha version of the product, several warning messages appear
when you run AddInUtil.exe. Inspect them briefly to be sure that the
HappyHourDiscount is not mentioned. Otherwise, ignore them.

Debug the add-in
In this section, you will set up Visual Studio so that you can debug your add-ins by starting Microsoft
Dynamics POS from within Visual Studio. Note that you have to deploy your files before you can
debug them.

Note
Debugging must be set up once for every add-in project that you write. We have
included a .user file that contains the debugging setup data in almost every project in
this lab so that you do not have to perform these steps at the beginning of each lab.

1. On the Projectmenu in Visual Studio 2008, click HappyHourDiscount Properties….

2. On the HappyHourDiscount tab, click the Debug tab.

3. In the Start Action radio button group, select Start external program:.

4. In the Start external program: text area, type:

C:\Program Files\Microsoft Dynamics - Point of Sale\pos.exe

5. In theWorking directory: text area in the Start Options group, type:

C:\Program Files\Microsoft Dynamics - Point of Sale\

6. Close the HappyHourDiscount tab.

7. On the Debugmenu, click Start Debugging.

8. Login in to Microsoft Dynamics POS when prompted.

When Microsoft Dynamics POS starts up, the Happy Hour Add-in diaog box is displayed:

12 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Conclusion: Creating a basic add-in
In this lab, you created an add-in that displayed a message box when Microsoft Dynamics POS
started up. While this functionality is very rudimentary, your fully functioning add-in demonstrates
how to code, deploy, and run any add-in.

Lab 1: Creating a basic add-in 13

lab 2
User interface extension 1
Now that we have created an add-in, we will add code to provide various customizations to the
user interface of Microsoft Dynamics POS. In this lab, you will:

● Add a menu item to the Manager View by exposing IAddInMenuItemProvider

● Add a user control to the custom pane in POS View

● Add a status panel to the status bar in POS View

● Add a function menu in POS View

● Add a task item to the task pane in POS View

Note
You can find a finished example of each lab in the Reference subfolder in each of the lab
folders in the SDKBootCamp folder on your desktop.

Throughout this document, you will be instructed to view these reference projects to study
finished code or to copy and paste infrastructure code that is either lengthy or not directly
related to the mechanics of writing a successful add-in.

Feel free to view these reference projects at any time. Note also that these projects compile
and can be deployed on your computer.

Setup
At the beginning of most of the labs, you will start by navigating to the Working folder in the folder
for the lab and double-click the .csproj file.

1. Run Visual Studio 2008 as Administrator.

2. From the Filemenu, click Open, and then click Project/Solution.

3. In the Favorite Links pane, click Desktop

4. Navigate to the Session2_UIExtension_1\Working folder.

5. Select the HappyHourDiscount.csproj file, and click Open.

Add a menu item to Manager View
In this section, you will add a menu item to the bottom of the Inventorymenu that appears in
Manager View.

14 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Add the menu-related classes to the project:
1. On the Projectmenu, click Add Class.

2. In the Name: text area on the Add New Item dialog box, type AddInMenuItem.cs. Click Add.

3. On the Projectmenu, click Add Class.

4. In the Name: text area on the Add New Item dialog box, type AddInMenuItemProvider.cs. Click
Add.

5. Add the following using statements to both AddInMenuItem.cs and
AddInMenuItemProvider.cs:

using System.AddIn;

using Microsoft.Rms.AddInViews.V300;

using Microsoft.Rms.AddInViews.V300.UIExtension;

Code AddInMenuItem.cs and AddInMenuItemProvider.cs
To add a menu to the Manager View in POS, you need to create a class that implements
IAddInMenuProvider and another class that implements IAddInMenu. You then use the
IAddInMenu object in the IAddInMenuProvider constructor to hook the handler up to the menu.

1. In the AddInMenuItem.cs file, Derive AddInMenuItem from IAddInMenuItem.

2. On the Desktop, find and open the SDKBootCamp folder. Navigate to the
Session1_CreatingAnAddIn\Reference\ folder.

3. Open the AddInMenuItem.cs file and copy the body of the AddInMenuItem class paste it
into the body of your AddInMenuItem class.

4. In the AddInMenuItemProvider.cs tab in the code window, mark the AddInMenuProvider
class as public.

5. Derive AddInMenuItemProvider from IAddInMenuItemProvider.

6. Apply the AddIn attribute to the AddInMenuItemProvider class. The title of the add-in is
“Happy Hour Add-in,” and the version is “1.0.0.0”.

7. Give AddInMenuItemProvider a private AddInMenuItem field an assign it to null. Call this
member settingsHappyHourDiscount, since this will eventually launch a settings dialog
box.

8. Give AddInMenuItemProvider a private method that takes an IAddInMenuItem parameter
and returns void. Call it DiscountHandler. You can leave the body empty, or, if you like,
display a message box so that you can see when this code is run.

9. Right-click IAddInMenuItemProvider, click Implement Interface, and then click Implement
Interface.

10. In the GetSubmenusmethod create a new IAddInMenuItem array, initialize it to contain the
private AddInMenuItem member you created above, and return the array.

11. Insert a public default constructor into the AddInMenuItemProvider class.

12. In the body of the constructor that you just created, assign settingsHappyHourDiscount to
a new AddInMenuItem that is keyed to the Inventory menu, has a single element array of
sub-items that contains a menu item with the title “Happy Hour Discount,” and is bound to the
DiscountHandlermethod that you created above.

Lab 2: User interface extension 1 15

Description of the AddInMenuItem class
Study the code you just pasted in to the body of AddInMenuItem. It provides a basic
implementation of the IAddInMenuItem interface. It has a constructor that takes four parameters,
and assigns the remaining members of the IAddInMenuItem to reasonable values. The four
parameters that are used by the constructor are necessary for adding a menu item to Microsoft
Dynamics POS. The following table explains these parameters.

Parameter Description

string key A string that uniquely identifies the menu.
This is preferably a GUID.

IAddInMenuItem[] subItems An array of submenus that belong to this
menu.

string text The text that appears on this menu.

System.Action<IAddInMenuItem>
onExecute

The method that is invoked when this menu
item is clicked.

The key argument, in addition to uniquely identifying a menu that you create, can also identify a
menu in Microsoft Dynamics POS. For your convenience, the ManagerMenuItem class provides
fields that evaluate to strings that identify the top-level menus. The following table shows these
fields:

Field Description

Edit Identifies the Editmenu item.

File Identifies the Filemenu item.

Help Identifies the Helpmenu item.

Inventory Identifies the Inventorymenu item.

People Identifies the Peoplemenu item.

Report Identifies the Reportmenu item.

Settings Identifies the Settingsmenu item.

Tools Identifies the Toolsmenu item.

Transactions Identifies the Transactionsmenu item.

View Identifies the Viewmenu item.

Update the manifest file
Because you’ve just implemented another view, the implementedViews attribute of the
AddinAssembly tag in the HappyHourDiscount.manifest file needs to specify this new view,
in addition to any views previously implemented in this add-in.

1. In the Solution Explorerwindow, double-click the HappyHourDiscount.manifest node to open
the HappyHourDiscount.manifest file.

2. Edit the value of the implementedViews attribute of the AddinAssembly tag so that it
includes Microsoft.Rms.AddInView.V300.UIExtension.IAddInMenuItemProvider.
When you are done with this step, the value of the implementedViews attribute should be a
comma-separated list of the previously implemented views and the new view, without white
space or line breaks.

3. Save the manifest file.

16 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Build and deploy the add-in
These steps are provided throughout this document. Remember that when debugging, you must
copy the new files to the installation directory before you will see your changes reflected in
Microsoft Dynamics POS. Also remember that you must run AddInUtil.exe every time you change
the application manifest file. It is easy to miss one or both of those steps in the heat of a debugging
session!

1. Save your work. Then, on the Buildmenu, click Build Solution.

2. Create a folder called HappyHourDiscount in the C:\Program Files\Microsoft
Dynamics - Point of Sale\Addins\ folder, if you haven’t already done so.

3. Open the SDKBootCamp folder on the Desktop and navigate to the
Session2_UIExtension1\Working\bin\Debug subfolder. Copy the
HappyHourDiscount.dll file and HappyHourDiscount.pdb file from here to
C:\Program Files\Microsoft Dynamics - Point of
Sale\Addins\HappyHourDiscount\.

4. Open the SDKBootCamp folder on the Desktop and navigate to the
Session2_UIExtension1\ subfolder. Copy the HappyHourDiscount.manifest file from
here to C:\Program Files\Microsoft Dynamics - Point of
Sale\Addins\HappyHourDiscount\.

5. On the Startmenu, point to All Programs, then point to Accessories, then right-click Command
Prompt, and then click Run as administrator.

6. At the command prompt, type:

%windir%\Microsoft.Net\Framework\V3.5\AddinUtil.exe -rebuild -PipelineRoot:"C:\Program
Files\Microsoft Dynamics - Point of Sale"

Lab 2: User interface extension 1 17

Debug the add-in
1. On the Debugmenu, click Start Debugging.

Note
If you get an error message about class library projects needing a debug action, see
the section Debug the add-in, on page 13.

2. Log in to Microsoft Dynamics POS.

3. Switch to Manager View.

4. Click the Inventorymenu.

Notice the Happy Hour Discount menu item at the bottom of the Inventory menu:

5. If you decided to display a dialog box for this menu item, click the Happy Hour Discount menu
item to display your dialog.

Summary for Adding a menu item to Manager View
In the preceding section, you implemented the IAddInMenuItemProvider view and updated the
manifest file to reflect the new view you added to your project. In addition, you optionally
implemented IAddInMenuItem to construct a menu item that Microsoft Dynamics POS could
display.

18 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Add a user control to the custom pane in POS View
In this section, you will add a browser control to the Custom Pane. To do this, you will create a class
that implements IHeaderPane to add a custom control to the project, another class that
implements IHeaderPaneProvider to enable you to display the control to the Microsoft
Dynamics POS the Custom Pane, and write methods and events to update the control at regular
intervals. Your Custom Pane will display the following graphic:

Deploy the Happy Hour HTML files.
The customization in this section enables you to display any html page in the Custom Pane. To
achieve the desired effect for the Happy Hour add-in, use the files provide in the html folder in the
folder for this lab.

1. On the Desktop, find and open the SDKBootCamp folder. Navigate to the
Session2_UIExtension1\html\ folder.

2. Copy the 4thcoffeeaddinhtml.swf and fourthcoffeeaddinhtml.html files to
C:\Program Files\Microsoft Dynamic – Point of
Sale\Content\HtmlStatusPane\.

Add a custom control to the project
In this section, you will add a browser control to the project and configure its properties.

1. On the Projectmenu, click Add User Control.

2. Type HeaderPaneControl.cs in the Name: text area of the Add New Item dialog box. Click Add.

3. Expand the Toolbox, expand the Common Controls node, and drag aWebBrowser control onto
the user control you added.

4. In the Anchor property in the Properties pane forWebBrowser1, type Top, Left, Bottom, Right.

5. In the ScrollBarsEnabled property, choose False.

6. Change the TabIndex property to 1.

7. View the code for HeaderPaneControl.cs.

Code the custom control
In this section, you will copy code that will allow the WebBrowser1 control to be updated at regular
intervals. (The HeaderPaneProvider class will start the timer that will regularly call the updates.)
Your user control code needs a handler for the timer event, a method to perform the actual update,
and a utility function to help establish the location of the displayed URL.

View the HeaderPaneControl.cs file in the Session2_UIExtension_1\Reference
subfolder of the SDKBootcamp folder to see how the following parts are implemented, and then
copy them into your code. Be sure to build your project and add any missing references or using
statements.

Item Description

HeaderPaneControl A public default constructor. Simply calls
InitializeComponent and SetHtmlPane.

Lab 2: User interface extension 1 19

SetHtmlPane Finds the HTML document to display, navigates the control
to it, and refreshes the control.

SetHtmlPane_Handler Some plumbing to handle timer events. Simply throws
away the parameters and updates the control.

GetCurrentProcessFolder A utility function that finds the location of the currently
running instance of POS. This is your installation directory.

Implemenent IHeaderPaneProvider
The following five steps create a minimally functional header pane provider.

1. Using the Add Class command on the Projectmenu, add a new class file called
HeaderPaneProvider.cs to the HappyHourDiscount project.

2. Add the following using statements HeaderPaneProvider.cs:

using System.AddIn;

using Microsoft.Rms.AddInViews.V300;

using Microsoft.Rms.AddInViews.V300.UIExtension;

3. Make the HeaderPaneProvider class public, mark it with the AddIn attribute, and make it
implement IHeaderPaneProvider.

4. Implement the IHeaderPaneProvider interface by right-clicking IHeaderPaneProvider in
the HeaderPaneProvider.cs file, and then clicking Implement Interface.

5. Replace the default implementation with code that creates a new HeaderPaneControl by
using the default constructor, stores the header pane control in a variable (call it control), and
returns the variable.

Previously, you created a simple implementation of the IHeaderPaneProvidermethod
GetControl. Now, view the HeaderPaneProvider.cs file from the reference project for this lab
and copy the implementation there into your GetControlmethod. Rebuild your solution and copy
over any using statements that you need to get your code to compile.

Update the manifest file
Because you’ve just implemented another view, the implementedViews attribute of the
AddinAssembly tag in the HappyHourDiscount.manifest file needs to specify this new view,
in addition to any existing views. Furthermore, because you’ve just created some additional UI, you
need to update the manifest to include this information as well.

1. In the Solution Explorerwindow, double-click the HappyHourDiscount.manifest node to open
the HappyHourDiscount.manifest file.

2. Edit the value of the implementedViews attribute of the AddinAssembly tag so that it
includes
Microsoft.Rms.AddInViews.V300.UIExtension.IAddInMenuItemProvider. When
you are done with this step, the value of the implementedViews attribute should be a
comma-separated list of the previously implemented views and the new view, without white
space or line breaks.

3. Inside the AddinAssembly tag, add the following attribute=value pair:

exposeUI="true"

4. Save the manifest file.

20 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Build and deploy the add-in
1. Save your work. Then, on the Buildmenu, click Build Solution.

2. Create a folder called HappyHourDiscount in the C:\Program Files\Microsoft
Dynamics - Point of Sale\Addins\ folder, if you haven’t already done so.

3. Open the SDKBootCamp folder on the Desktop and navigate to the
Session2_UIExtension1\Working\bin\Debug subfolder. Copy the HappyHourDiscount.dll file and
HappyHourDiscount.pdb file from here to C:\Program Files\Microsoft Dynamics - Point of
Sale\Addins\HappyHourDiscount\.

4. Open the SDKBootCamp folder on the Desktop and navigate to the Session2_UIExtension1\
subfolder Copy the HappyHourDiscount.manifest file from here to C:\Program Files\Microsoft
Dynamics - Point of Sale\Addins\HappyHourDiscount\.

5. On the Startmenu, point to All Programs, then point to Accessories, then right-click Command
Prompt, and then click Run as administrator.

6. At the command prompt, type:

%windir%\Microsoft.Net\Framework\V3.5\AddinUtil.exe -rebuild -PipelineRoot:"C:\Program
Files\Microsoft Dynamics - Point of Sale"

Debug the add-in
1. On the Debugmenu, click Start Debugging.

Note
If you get an error message about class library projects needing a debug action,
see the section Debug the add-in, on page 13.

Your Custom Pane will display the Happy Hour image:

Add a status panel to the status bar in POS View
In this section, you will use an IStatusBarPanelFactory passed to you by Microsoft Dynamics
POS to create a status bar message that displays a brief message that includes the current time,
updated every 20 seconds.

Implement IStatusBarPanelProvider
1. Add a class to your project called StatusBarPanelProvider.

Lab 2: User interface extension 1 21

2. Add using statements for the System.AddIn namespace and the add-in views, including the
UIExtension namespace.

3. Mark StatusBarPanelProviderwith the AddIn attribute.

4. Make StatusBarPanelProvider public.

5. Implement the IStatusBarPanelProvider interface in the StatusBarPanelProvider
class.

6. View the StatusBarPanelProvider.cs file from the reference project for this lab and copy
and paste the code for _firstPanel, FirstPanel, UpdateStatusBar,
UpdateStatusBar_Handler, intervalInMillisec, and the
StatusBarPanelProvider constructor into your StatusBarPanelProvider class.

Briefly study the code you copied in so that you can understand how it works. The timer code in the
constructor is similar to code used in HeaderPaneProvider.cs. Consequently, much of the
code of this section is similar. There is an event handler that responds to timer events by ignores
the event parameters and simply calling a helper method.

7. In the PopulateStatusBarmethod, provide an implementation that uses the passed in
IStatusBarPanelFactory to create a visible status bar with no image, assigns it to
_firstPanel, and calls UpdateStatusBar.

Update the manifest file
Because you’ve just implemented another view, the implementedViews attribute of the
AddinAssembly tag in the HappyHourDiscount.manifest file needs to specify this new view,
in addition to any existing views.

1. In the Solution Explorerwindow, double-click the HappyHourDiscount.manifest node to open
the HappyHourDiscount.manifest file.

2. Edit the value of the implementedViews attribute of the AddinAssembly tag so that it
includes
Microsoft.Rms.AddInViews.V300.UIExtension.IStatusBarPanelProvider. When
you are done with this step, the value of the implementedViews attribute should be a
comma-separated list of the previously implemented views and the new view, without white
space or line breaks.

3. Save the manifest file.

Build and deploy the add-in
1. Save your work. Then, on the Buildmenu, click Build Solution.

2. Create a folder called HappyHourDiscount in the C:\Program Files\Microsoft
Dynamics - Point of Sale\Addins\ folder, if you haven’t already done so.

3. Open the SDKBootCamp folder on the Desktop and navigate to the
Session2_UIExtension1\Working\bin\Debug subfolder. Copy the HappyHourDiscount.dll file and
HappyHourDiscount.pdb file from here to C:\Program Files\Microsoft Dynamics - Point of
Sale\Addins\HappyHourDiscount\.

4. Open the SDKBootCamp folder on the Desktop and navigate to the Session2_UIExtension1\
subfolder Copy the HappyHourDiscount.manifest file from here to C:\Program Files\Microsoft
Dynamics - Point of Sale\Addins\HappyHourDiscount\.

5. On the Startmenu, point to All Programs, then point to Accessories, then right-click Command
Prompt, and then click Run as administrator.

6. At the command prompt, type:

22 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

%windir%\Microsoft.Net\Framework\V3.5\AddinUtil.exe -rebuild -PipelineRoot:"C:\Program
Files\Microsoft Dynamics - Point of Sale"

Debug the add-in
1. On the Debugmenu, click Start Debugging.

Note
If you get an error message about class library projects needing a debug action, see
the section Debug the add-in, on page 13.

2. After you log in to Microsoft Dynamics POS, notice the Happy Hour message in the status bar.

Add a function menu in POS View
In this section, you will create a function menu class, a function menu button class, and a function
menu provider class, that together present POS users with the options to extend Happy Hour by one
hour or by two. (For this lab, you will just display a message box that declares that Happy Hour has
been extended.) Note that, previously, function menus were referred to as slider menus. The
interfaces related to function menus use the older terminology. Therefore, you will use
ISliderMenuButton, ISliderMenu, and ISliderMenuProvider in this lab.

Create the function menu button class
The function menu button class, SliderMenuButton, implements ISliderMenuButton. It uses
an enumeration, MenuButtonNameEnum, to determine the action it should take when clicked. Its
structure is straightforward and its implementation is simple. Note that that the AddIn attributes
does not need to be applied to this piece of UI code.

The function menu class, SliderMenu, implements ISliderMenu, which requires accessors for an
array of buttons and an identifier that specifies on which function menu to place the menu. The
constructor for the implementation in this lab simply takes two arguments and assigns them to the
private fields behind the interface’s required properties.

● View the SliderMenuButton.cs and SliderMenu.cs files in
Session2_UIExtension_1\Reference subfolder of the SDKBootcamp folder.

● Add two new classes to your solution, SliderMenuButton.cs and SliderMenu.cs,
and paste the class and enumeration implementation code from the next session into this
file.

● Add the following using statements to SliderMenuButton.cs and SliderMenu.cs:

using System.AddIn;

using Microsoft.Rms.AddInViews.V300.UIExtension;

Lab 2: User interface extension 1 23

Create the function menu provider class (ISliderMenuProvider)
The function menu provider, SliderMenuProvider, implements ISliderMenuProvider. This
interface requires one method that returns an array of submenus. Because the SliderMenuProvider
class must be discoverable by POS, it needs the AddIn attribute, needs to be public, and needs an
entry in the manifest.

1. Add a new class to your project called SliderMenuProvider.

2. Make the SliderMenuProvider class public.

3. Add the following using statements to SliderMenuProvider.cs:

using System.AddIn;

using Microsoft.Rms.AddInViews.V300.UIExtension;

4. Create a private ISliderMenu array member (sliderMenu) for the SliderMenuProvider
class and a no-arg constructor.

5. In the constructor create an array that contains two SliderMenuButton objects named
“Extend Happy Hour by 1 Hour” and “Extend Happy Hour by 2 Hours,” both of which are created
with the corresponding MenuButtonNameEnum values.

6. Create a new SliderMenu object with the key “Tasks” and pass it the array created in Step 5.

7. Assign sliderMenu to a single-element ISliderMenu array that contains the SliderMenu object
created in Step 6.

8. If you used temporary variables to perform Steps 5 through 7, clean up your code by removing
temporary variables and using anonymous arrays and objects, if desired.

9. Implement the ISliderMenuProvider interface in the SliderMenuProvider class. Simply
return sliderMenu.

Update the manifest file
Because you’ve just implemented another view, the implementedViews attribute of the
AddinAssembly tag in the HappyHourDiscount.manifest file needs to specify this new view,
in addition to any existing views.

1. In the Solution Explorerwindow, double-click the HappyHourDiscount.manifest node to open
the HappyHourDiscount.manifest file.

2. Edit the value of the implementedViews attribute of the AddinAssembly tag so that it
includes Microsoft.Rms.AddInViews.V300.UIExtension.ISliderMenuProvider.
When you are done with this step, the value of the implementedViews attribute should be a
comma-separated list of the previously implemented views and the new view, without white
space or line breaks.

3. Save the manifest file.

Build and deploy the add-in
1. Save your work. Then, on the Buildmenu, click Build Solution.

2. Create a folder called HappyHourDiscount in the C:\Program Files\Microsoft
Dynamics - Point of Sale\Addins\ folder, if you have not already done so.

3. Open the SDKBootCamp folder on the Desktop and navigate to the
Session2_UIExtension1\Working\bin\Debug subfolder. Copy the HappyHourDiscount.dll file and
HappyHourDiscount.pdb file from here to C:\Program Files\Microsoft Dynamics - Point of
Sale\Addins\HappyHourDiscount\.

24 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

4. Open the SDKBootCamp folder on the Desktop and navigate to the Session2_UIExtension1\
subfolder Copy the HappyHourDiscount.manifest file from here to C:\Program Files\Microsoft
Dynamics - Point of Sale\Addins\HappyHourDiscount\.

5. On the Startmenu, point to All Programs, then point to Accessories, then right-click Command
Prompt, and then click Run as administrator.

6. At the command prompt, type:

%windir%\Microsoft.Net\Framework\V3.5\AddinUtil.exe -rebuild -PipelineRoot:"C:\Program
Files\Microsoft Dynamics - Point of Sale"

Debug the add-in
1. On the Debugmenu, click Start Debugging.

Note
If you get an error message about class library projects needing a debug action, see
the section Debug the add-in, on page 13.

2. After you log in to Microsoft Dynamics POS, click the Tasks function menu in POS View to reveal
theMore task menu:

3. Click theMoremenu to display the task pane menus:

Lab 2: User interface extension 1 25

4. Click the Extend Happy Hour by 1 hour menu to display the Happy Hour dialog.

Add a task item to the task pane in POS View
In this section, you will create a task item on the Task Pane that will display a dialog box that
contains basic information about the Happy Hour Discount add-in. To do this, you will have to both
code the add-in and configure Microsoft Dynamics POS to display the task item you created in the
Task Pane.

The add-in code consists of two files, ExposedTask.cs and ExposedTaskProvider.cs. As you may be
able to guess by now, the ExposedTasks class will be public, implement an add-in interface, and
require the AddIn attribute. Also, as you might have guessed, the ExposedTask class does the actual
work of this add-in. Since ExposedTasks depends on ExposedTask, you will implement ExposedTask
first.

Create the task class
The ExposedTask class implements the IExposedTask interface. Its implementation for this exercise
is very simple; Its properties return uncomplicated values and its action simply displays a message
box. Note, however, that the IsConfigurable property returns false, and that the
EditTaskConfiguration property therefore returns an empty string. For tasks where the IsConfigurable
property returns true, you must supply a configuration dialog that is called from
EditTaskConfiguration and returns a configuration string.

1. Add a new class to your solution called ExposedTask.cs.

2. Add the following using statements to ExposedTask.cs:

using System.Windows.Forms;

using Microsoft.Rms.AddInViews.V300.UIExtension;

3. Declare that the ExposedTask class implements IExposedTask.

4. View the ExposedTask.cs file in the reference solution and copy the body of the ExposedTask
class from there into the body of your ExposedTask class.

26 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Create the task provider class
1. Add a new class to your solution called ExposedTaskProvider.cs.

2. Add the following using statements to ExposedTaskProvider.cs:

using System.Windows.AddIn;

using Microsoft.Rms.AddInViews.V300.UIExtension;

3. Make the ExposedTasks class public.

4. Mark the ExposedTasks class with the AddIn attribute.

5. Implement the IExposedTasks interface in the ExposedTasks class.

6. View the ExposedTaskProvider.cs file in the reference solution and copy the body of the
ExposedTask class from there into the body of your ExposedTask class.

Update the manifest file
Because you’ve just implemented another view, the implementedViews attribute of the
AddinAssembly tag in the HappyHourDiscount.manifest file needs to specify this new view,
in addition to any existing views.

1. In the Solution Explorerwindow, double-click the HappyHourDiscount.manifest node to open
the HappyHourDiscount.manifest file.

2. Edit the value of the implementedViews attribute of the AddinAssembly tag so that it
includes Microsoft.Rms.AddInViews.V300.UIExtension.IExposedTasks. When you
are done with this step, the value of the implementedViews attribute should be a
comma-separated list of the previously implemented views and the new view, without white
space or line breaks.

3. Save the manifest file.

Build and deploy the add-in
1. Save your work. Then, on the Buildmenu, click Build Solution.

2. Create a folder called HappyHourDiscount in the C:\Program Files\Microsoft Dynamics - Point
of Sale\Addins\ folder, if you haven’t already done so.

3. Open the SDKBootCamp folder on the Desktop and navigate to the
Session2_UIExtension1\Working\bin\Debug subfolder. Copy the HappyHourDiscount.dll file and
HappyHourDiscount.pdb file from here to C:\Program Files\Microsoft Dynamics - Point of
Sale\Addins\HappyHourDiscount\.

4. Open the SDKBootCamp folder on the Desktop and navigate to the Session2_UIExtension1\
subfolder Copy the HappyHourDiscount.manifest file from here to C:\Program Files\Microsoft
Dynamics - Point of Sale\Addins\HappyHourDiscount\.

5. On the Startmenu, point to All Programs, then point to Accessories, then right-click Command
Prompt, and then click Run as administrator.

6. At the command prompt, type:

%windir%\Microsoft.Net\Framework\V3.5\AddinUtil.exe -rebuild -PipelineRoot:"C:\Program
Files\Microsoft Dynamics - Point of Sale"

Configure Microsoft Dynamics POS to display the task
The steps in this section are performed in Microsoft Dynamics POS Alpha.

1. Run Microsoft Dynamics POS Alpha.

Lab 2: User interface extension 1 27

2. Switch to Manager View.

3. On the Settingsmenu, point to Register Settings, and then click Task Pads.

4. In the Task Pads pane, double-click on the Owner Tasks task pad.

5. In the Owner Tasks dialog box, click Issue Gift Card in the Preview group.

6. In the Button type list in the Settings for the selected button group, click Add-In Action.

7. In the Add-InName list, click Happy Hour Discount.

8. In the Action list, click About Happy Hour.

9. In the Caption 1 box, type About Happy Hour....

10. Close Microsoft Dynamics POS Alpha.

Debug the add-in
1. On the Debugmenu in Visual Studio 2008, click Start Debugging.

Note
If you get an error message about class library projects needing a debug action, see
the section Debug the add-in, on page 13.

Notice that the Issue Gift Card task has been replaced by About Happy Hour:

2. Click About Happy Hour… to launch the About dialog box:

28 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Lab 2: User interface extension 1 29

lab 3
User interface extension 2
In this brief lab, you will add a settings dialog for the HappHourDiscount add-in. In the next two
labs, you will update this dialog box to interact with the POS database.

For now, since most of the implementation details of this dialog box are either utility functions or
designer code, you will copy the code over from the reference section, study it, and then build and
debug the application.

Setup
First, we’ll set up the project for this lab.

1. Run Visual Studio 2008 as Administrator.

2. From the Filemenu, click Open, and then click Project/Solution.

3. In the Favorite Links pane, click Desktop

4. Navigate to Session3_UIExtension_2\Working the folder.

5. Select the HappyHourDiscount.csproj file, and click Open.

Add the configuration dialog and helper class

Adding the files
1. Copy the HappyHourDiscountControl.cs, HappyHourDiscountControl.Designer.cs,

HappyHourDiscountControl.resx, and XmlConfig.cs files from the reference project for this
section into your current Working directory.

2. On the Projectmenu, select Show all files.

3. Right-click on the HappyHourDiscountControl.cs node in Solution Explorer, click Include In
Project.

4. Repeat Step 3 for the XmlConfig.cs node.

5. On the Projectmenu, clear Show all files.

Add handler logic to AddInMenuProvider.cs
● Open to the AddInMenuProvider.cs file in the reference project for this lab. Copy the body

of the DiscountHandler method into the DiscountHandler method in your
AddInMenuProvider.cs file.

Build and deploy the add-in
1. Save your work. Then, on the Buildmenu, click Build Solution.

30 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

2. Create a folder called HappyHourDiscount in the C:\Program Files\Microsoft Dynamics – Point
of Sale\Addins\ folder, if you haven’t already done so.

3. Open the SDKBootCamp folder on the Desktop and navigate to the
Session3_UIExtension2\Working\bin\Debug\ subfolder. Copy the HappyHourDiscount.dll file
and HappyHourDiscount.pdb file from here to C:\Program Files\Microsoft Dynamics – Point of
Sale\Addins\HappyHourDiscount\.

4. Open the SDKBootCamp folder on the Desktop and navigate to the Session3_UIExtension2\
subfolder Copy the HappyHourDiscount.manifest file from here to C:\Program Files\Microsoft
Dynamics – Point of Sale\Addins\HappyHourDiscount\.

5. On the Startmenu, point to All Programs, then point to Accessories, then right-click Command
Prompt, and then click Run as administrator.

6. At the command prompt, type:

%windir%\Microsoft.Net\Framework\V3.5\AddinUtil.exe –rebuild –PipelineRoot:”C:\Program
Files\Microsoft Dynamics – Point of Sale”

Debug the add-in
1. On the Debugmenu, click Start Debugging.

Note
If you get an error message about class library projects needing a debug action, see
the section Debug the add-in, on page 13.

2. Switch to Manager View.

3. On the Inventorymenu, click Happy Hour Discount.

The Happy Hour Discount configuration dialog is displayed.

Lab 3: User interface extension 2 31

lab 4
Object model and data views 1
In this and the following lab, you will get a connection to the product database and use it to read to
and write from the Microsoft Dynamics POS product database. You will also register for events
raised by Microsoft Dynamics POS and provide add-in logic that responds to these events.

Note
You can find a finished example of each lab in the Reference subfolder in each of the lab
folders in the SDKBootCamp folder on your desktop.

Throughout this document, you will be instructed to view these reference projects to study
finished code or to copy and paste infrastructure code that is either lengthy or not directly
related to the mechanics of writing a successful add-in.

Feel free to view these reference projects at any time. Note also that these projects compile
and can be deployed on your computer.

Setup
1. Run Visual Studio 2008 as Administrator.

2. From the Filemenu, click Open, and then click Project/Solution.

3. In the Favorite Links pane, click Desktop

4. Navigate to the Session4_DataAndObjects1\Working folder.

5. Select the HappyHourDiscount.csproj file, and click Open.

Create a department data class
In this section, you will create a class called Department in a new file called Data.cs. The
Department class will have three public string fields, DepartmentCode, DepartmentName, and ID. It
will have a ToString method tht returns DepartmentName (DepartmentCode).

1. On the Projectmenu, click Add New Item….

2. In the Add New Item dialog box, expand the Visual C# Items node.

3. In the Templates pane, click Code File.

4. In the Name: text area, type Department.cs.

5. Either implement the code described in the opening remarks of this section, or copy it from the
reference solution for this lab.

32 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Expose PosApp as a public static readonly property
In the first lab, you created a PosAddIn class that implemented IPosAddIn. That class had an
IPosApplication member called PosApp. That member was not marked public nor static. In this
section, you will update the PosAddIn class to enable other classes to get a handle to the running
Microsoft Dynamics POS application instance.

1. Open PosAddIn.cs in your working project.

2. Change PosApp from a private field to a public static readonly property.

3. Remove the message box from SetPosApplication, if you haven’t done so already.

Create the POSDataManager class
In this section, you will create a helper class, POSDataManager, that gets a connection to the
product database and then uses that connection to return department data from the store database.

Create a property of the type ISqlConnectionProvider
You get a valid ISqlConnectionProvider instance by first getting a valid IPosApplication instance and
calling QueryInterface<T>. Conveniently, in the PosAddIn class , you just exposed PosApp, which
receives a valid IPosApplication instance from Microsoft Dynamics POS.

The code that gets the database connection is in the static PosSqlConnection property of type
ISqlConnectionProvider. This property calls the PosAddIn.PosApp.QueryInterface<T> generic
method, passing the type parameter ISqlConnectionProvider. This causes QueryInterface to return
an ISqlConnectionProvider interface that you can use to query the Microsoft Dynamics POS
database.

1. Add a new public static class to your project called DataManager.

2. Create a public static read-only property of the type ISqlConnectionProvider for the
POSDataManager class. Call the member PosSqlConnection.

3. Implement the get accessor so that checks to see if PosAddIn.PosApp is defined and, if it is,
returns an ISqlConnectionProvider that can be used to query the Microsoft Dynamics POS
database.

Use the POSDataManager.PosSqlConnection property
Microsoft Dynamics POS exposes a variety of public database view. Querying against these views is
the recommended way of interacting with the database. These views represent a stable way to
access POS data, and they insulate you from accidentally deleting data.

1. In Visual Studio 2008, choose the Toolsmenu and click Connect to Database….

2. In the Add Connection dialog box, change the Data Source.

3. In the Change Data Source dialog box, choose theMicrosoft SQL Server data source. Click OK.

4. In the Add Connection dialog box, type (local)\msposinstance in the Server Name combo box.

5. Select theMSPOSSample database in the Select or enter a database name drop down menu.

6. In Server Explorer, expand Data Connections, expand the MSPOSSample database, and then
expand Views

Lab 4: Object model and data views 1 33

The GetDepartmentforItem and GetListOfDepartments methods both use the PosSqlConnection
property that you just created to call the ISqlConnectionProvider.EstablishConnectionAndRun
method with the actions shown in the reference file. The GetDepartmentForItem method
queries the views provided in the Microsoft Dynamics POS database to return the department
code for an item. Similarly, the GetListOfDepartments method calls EstablishConnectionAndRun
to query the database for the list of departments in the database and returns them as a list of
Department objects. (The Department class was defined earlier in the Data.cs file.)

4. Create a public static method called GetDepartmentForItem that takes a string called
itemLookup and returns a Department object that corresponds to the department for the item.
Your method should use the EstablishSqlConnectionAndRun method of the PosSqlConnection
property created above.

Note
The item and department information are in views called PublicItem and
PublicDepartment, respectively.

5. Create a public static method called GetListOfDepartments that returns a List<Department> of all
the departments in the store.

Update the HappyHourDiscount control

Update btnSave_Click
In the following steps, you will add code to btnSave_Click that adds the departments that are
checked in the dialog box to the configuration file.

1. Open the HappyHourDiscountControl.cs file in your working project for this lab.

2. Find the TODO: item in the btnSave_Click method.

3. Open the HappyHourDiscountControl.cs file from the reference project for this lab and locate
the code that corresponds to the TODO: item found in Step 2. (Hint: The comments are
identical.)

4. Study the reference code until you understand what it does, then copy it in to your
btnSave_Click method.

Update PopulateDepartment
This section is similar to the previous section. You will find the two PopulateDepartment methods in
the working and reference HappHourDiscountControl class, study the reference code, and then
copy it in to your solution.

When you are done, your PopulateDepartment method will populate the dialog box with the list of
departments, preserving their checked state. The following steps assume that you still have the two
HappyHourDiscountControl.cs files open.

1. Find the TODO: item in the PopulateDepartment method in your working project.

2. Find the code that corresponds to the TODO: item found in Step 1. (Hint: The comments are
identical.)

3. Study the reference code until you understand what it does, then copy it in to your
PopulateDepartment method.

Create the DiscountHelper utility class
Eventually, you will provide a handler in the PosAddIn class that calculates the discounted price
when an item sales charge is added to the transaction. Rather than put that logic directly in the
handler, you will create a utility class in this section to perform that work.

34 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

The DiscountHelper utility class contains four methods: IsHappyHour, HappyHourMinutesLeft,
IsQualifiedForDiscount, and CalculateDiscountedPrice. HappyHourMinutesLeft reads the
configuration string for the dialog to determine the start and end times for Happy Hour and
determines if the current time is in that range. HappyHourMinutesLeft checks to see if it is Happy
Hour, and then returns the time left. IsQualifiedForDiscount checks the department for an item and
returns true if the item’s department is eligible for discounting. (Implicitly in this example, eligibility
depends upon the item’s department.) CalculateDiscountedPrice performs some relatively simple
tests to determine how to apply the discount, and then does so if required.

Study this class to be sure you understand how it works, and then simply copy it from the reference
project for this lab into your working project for this lab.

1. Add a new class to your working project called DiscountHelper.

2. Open the reference project and copy DiscountHelper.cs into the DiscountHelper.cs file in your
working project.

Finish updating PosAddIn
Previously in this lab, you updated the PosAddIn class to make the IPosApplication member PosApp
public. In the following subsections, you will further update the PosAddIn class by implementing a
handler for the ItemSalesChardeAdded event raised by Microsoft Dynamics POS. This example is
interesting because you get to see two calls to the static IPosAddIn.QueryInterface<T> generic
method. One of these calls specifies the IPosInstance type and returns the currently running instance
of POS. The other call specifies the IPosEvents type and returns a collection of all the events that
POS can raise.

Study this class to be sure you understand how it works, and then simply copy it from the reference
project for this lab into your working project for this lab.

1. Open the PosAddIn.cs file that is in the reference directory for this lab.

2. Open the PosAddIn.cs file that is in the working directory for this lab.

3. Add the following using statements to your PosAddIn.cs file:

using Microsoft.Rms.AddInViews.V300.PosTransaction;

using Microsoft.Rms.AddInViews.V300.Events;

using Microsoft.Rms.AddInViews.V300.ServiceModel;

4. Copy the PosAddIn_ItemSalesChargeAdded event handler from the reference file to your
file.

5. Copy the comment line and code line that add an event handler to the
ItemSalesChargeAdded event in the SetPosApplicationmethod to your
SetPosApplication method.

Update the Status Bar, Custom Pane, and Function Menus
Until now, the implementations of the Status Bar, Custom Pane, and Function menus have provided
a basic demonstration of the kinds of customizations possible with the Microsoft Dynamics POS
SDK. Now that you’ve put most of the pieces in place that are necessary to implement a functioning
add-in, it’s time to update the code for these items so that they provide the total Happy Hour
experience for cashiers and managers.

Update the HeaderPaneControl.SetHtmlPane method
Previously, the SetHtmlPane method always displayed the Happy Hour graphic, no matter the time.
In this section, you will update the SetHtmlPane method to only show the Happy Hour graphic
during the appropriate time slot. The new SetHtmlPane method uses the IsHappHour method to
determine whether or not it is Happy Hour. It then sets the new URL for the HeaderPane based on

Lab 4: Object model and data views 1 35

whether the configuration is valid and the user’s preferences. Note that the StatusBar.htm file
contains the HTML that is displayed by POS before it has been customized. That is, the appearance
of POS will be unaffected if there are any “soft failures” in SetHtmlPane.

1. Open the HeaderPaneControl.cs file in your working project for this lab.

2. Open the HeaderPaneControl.cs file in the reference project for this lab.

3. Study the code in the SetHtmlPane method to be sure that you understand how it works, then
copy its body into the body of your SetHtmlPane method.

Update the SliderMenuButton.Execute method
Previously, the SliderMenuButton.Execute method simply displayed message boxes indicating that
the extension functionality had not been implemented. The logic to perform the extension is
straightforward. Study the SliderMenuButton.Execute method in the reference file and copy it in to
your own.

Update the StatusBarPanelProvider.UpdateStatusBar method
Previously, the UpdateStatusBar method displayed a simple happy hour message that contained the
current time. By using IsHappyHour and HappyHourMinutesLeft, it is easy to update
UpdateStatusBar to correctly display the number of minutes remaining in the current Happy Hour.
Either do this yourself or copy the code in from the reference project.

Build and deploy the add-in
1. Save your work. Then, on the Buildmenu, click Build Solution.

2. Create a folder called HappyHourDiscount in the C:\Program Files\Microsoft Dynamics - Point
of Sale\Addins\ folder, if you haven’t already done so.

3. Open the SDKBootCamp folder on the Desktop and navigate to the
Session4_DataAndObjects1\bin\Debug subfolder. Copy the HappyHourDiscount.dll file and
HappyHourDiscount.pdb file from here to C:\Program Files\Microsoft Dynamics - Point of
Sale\Addins\HappyHourDiscount\.

4. Open the SDKBootCamp folder on the Desktop and navigate to the Session4_DataAndObjects1\
subfolder Copy the HappyHourDiscount.manifest file from here to C:\Program Files\Microsoft
Dynamics - Point of Sale\Addins\HappyHourDiscount\.

5. On the Startmenu, click Run.

6. In the Run dialog box, type cmd. Press Enter.

7. At the command prompt, type:

%windir%\Microsoft.Net\Framework\V3.5\AddinUtil.exe -rebuild -PipelineRoot:"C:\Program
Files\Microsoft Dynamics - Point of Sale"

Debug the add-in
● On the Debugmenu, click Start Debugging.

Note
If you get an error message about class library projects needing a debug action,
see the section Debug the add-in, on page 13.

36 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

lab 5
Object model and data views 2
In this lab, you will create a table for the Happy Hour add-in in the Microsoft Dynamics POS
database. You will then modify DataManager.cs and PosAddIn.cs to save discount information to the
database. The table you create will be used in subsequent labs.

You will also create a new receipt variable that displays a Happy Hour savings message on the
customers’ receipts. In addition, you will configure Microsoft Dynamics POS to enable this
functionality.

Create and modify a table for the Happy Hour add-in

Setup
1. Run Visual Studio 2008 as Administrator.

2. From the Filemenu, click Open, and then click Project/Solution.

3. In the Favorite Links pane, click Desktop

4. Navigate to the Session5_DataAndObjects2\Working folder.

5. Select the HappyHourDiscount.csproj file, and click Open.

Create the SQL script to create the HappyHour table
In this section, you’ll create a table in the POS database to store data related to items sold during
happy hour. The CreateDBTable.sql file creates a Table called HappyHour that has four columns: ID,
ItemLookpCode, DiscountedPrice, and SoldTime. ID and SoldTime do not need to be updated by
your code.

1. Copy the CreateDBTable.sql file from the reference project to C:\temp\CreateDBTable.sql.

2. On the Startmenu, point to All Programs, then point to Accessories, then right-click Command
Prompt, and then click Run as administrator.

3. At the command prompt, type the following:

sqlcmd -E -S (local)\msposinstance -i "C:\temp\CreateDBTable.sql"

Alternatively, you can add the CreateDBTable.sql file to your working project. In this case, if SQL
Server 2005 is installed, you will be able to run the SQL script from inside Visual Studio.

Add POSDataManger.SaveDiscountDetails
Now that you have a table in the POS database, you can save records to it. The code in
SaveDiscountDetails in the reference project for this lab runs an INSERT query that saves the lookup
code and discounted price. It uses the POSDataManager.SqlConnectionProvider property to call
EstablishConnectionAndRun to run the INSERT query.

● Create a public static void method called SaveDiscountDetails that takes the item lookup
code as a string and the discounted price as a decimal, and uses

Lab 5: Object model 2 37

PosSqlConnection.EstablishSqlConnectionAndRun to insert the discounted price into the
Microsoft Dynamics POS database.

Update PosAddIn.PosAddIn_ItemSalesChargeAdded
Add a call to SaveDiscountDetails in PosAddIn_ItemSalesChargeAdded to save the discount details
for each discounted item. View the reference project if you have any difficulties.

Build and deploy the add-in
1. Save your work. Then, on the Buildmenu, click Build Solution.

2. Create a folder called HappyHourDiscount in the C:\Program Files\Microsoft Dynamics - Point
of Sale\Addins\ folder, if you haven’t already done so.

3. Open the SDKBootCamp folder on the Desktop and navigate to the
Session5_DataAndObjects2\bin\Debug subfolder. Copy the HappyHourDiscount.dll file and
HappyHourDiscount.pdb file from here to C:\Program Files\Microsoft Dynamics - Point of
Sale\Addins\HappyHourDiscount\.

4. Open the SDKBootCamp folder on the Desktop and navigate to the Session5_DataAndObjects2\
subfolder Copy the HappyHourDiscount.manifest file from here to C:\Program Files\Microsoft
Dynamics - Point of Sale\Addins\HappyHourDiscount\.

5. On the Startmenu, point to All Programs, then point to Accessories, then right-click Command
Prompt, and then click Run as administrator.

6. At the command prompt, type:

%windir%\Microsoft.Net\Framework\V3.5\AddinUtil.exe -rebuild -PipelineRoot:"C:\Program
Files\Microsoft Dynamics - Point of Sale"

Debug the add-in
1. On the Debugmenu, click Start Debugging.

Note
If you get an error message about class library projects needing a debug action,
see the section Debug the add-in, on page 13.

2. Using the Happy Hour UI you have added in previous labs, ensure that it is now Happy Hour and
that at least one department has discountable items.

3. Using POS, process a transaction that has at least one discounted item.

4. Exit POS.

5. In Visual Studio 2008, choose the Toolsmenu and click Connect to Database….

6. In the Add Connection dialog box, change the Data Source.

7. In the Change Data Source dialog box, choose theMicrosoft SQL Server data source. Click OK.

8. In the Add Connection dialog box, type (local)\msposinstance in the Server Name combo box.

9. Select theMSPOSSample database in the Select or enter a database name drop down menu.

10. In Server Explorer, expand Data Connections, expand theMSPOSSample database, and then
expand Tables.

11. Right-click on the HappyHour table and click Retrieve Data.

Notice the new transaction data in the HappyHour database.

Create a receipt variable

38 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Setup
1. Run Visual Studio 2008 as Administrator.

2. From the Filemenu, click Open, and then click Project/Solution.

3. In the Favorite Links pane, click Desktop

4. Navigate to the Session6_ReceiptVariables\Working folder.

5. Select the HappyHourDiscount.csproj file, and click Open.

Add an event listener and data to track the total discount
Microsoft Dynamics POS makes event available to you through the
IPosApplication.QueryInterface<T> generic method. Simply specify the type
Microsoft.Rms.AddInViews.V300.Events.IPosEvents when calling QueryInterface. The IPosEvents
class has instance variables that expose all the events that can be raised by Microsoft Dynamics
POS.

1. Open the DiscountHelper.cs file in your project.

2. Add a public static decimal field to DiscountHelper called TotalDiscount. Initialize it to
0m.

3. Open PosAddin.cs in your project.

4. Create a void method called PosAddIn_TransactionInitialized that takes an
IPosTransaction object as its only argument.

5. In the body of PosAddIn_TranasctionInitialized, set
DiscountHelper.TotalDiscount equal to 0m.

6. In the SetPosApplicationmethod in the PosAddIn class, add
PosAddIn_TransactionInitialized to the TransactionInitialized delegate
immediately below the line that adds a listener to ItemSalesChargeAdded. (View that line of
code to guide you.)

7. In PosAddIn_ItemSalesChargeAdded, add a line of code that keeps track of the amount of
the discount total in DiscountHelper.TotalDiscount field.

Create a new receipt template
Receipt variables are stored in receipt templates, which are XML files that represent conditional logic
for printing information on a receipt.

1. Copy the C:\Program Files\Microsoft Dynamics - Point of
Sale\Database\2.50\SeedData\Files\Receipt_40column.xml file to your working directory and
add the file to your project.

2. Open, in Visual Studio, the Receipt_40Column.xml file that is in your project.

3. Save the Receipt_40Column.xml file in the same folder as HappyHourReceipt_40Column.xml.

4. On the Editmenu, click Go To….

5. In the Go To Line dialog box, type 688 and click OK.

Note
Visual Studio formats XML files for display. This formatting adds and removes newlines so
that, in general, line locations will be different between Visual Studio and Notepad, for
example. In these instructions, line 688 is immediately above the first line inside the
Transaction Totals section that reads <FOR each=”tender”>.

6. Insert the following code between the </IF> and <FOR each=”tender”> lines.

<IF>

Lab 5: Object model 2 39

<CONDITION>len(addin.POSTestCompany.DiscountAmount)</CONDITION>

<THEN>

<ROW>"Happy Hour Discount|"
addin.POSTestCompany.DiscountAmount</ROW>

</THEN>

</IF>

Note
The above code inserts a row on the receipt with a label and the discount amount if the
length of the discount amount is greater than zero.

7. Save the HappyHourReceipt_40Column.xml file.

Add a receipt variable provider class
To use receipt variables in an add-in, you need to implement IReceiptVariableProvider.

1. Add a class called ReceiptVariableProvider to your project.

2. Add the following using statements to your ReceiptVariableProvider.cs file:

using System.AddIn;

using System.AddIn.Contract;

using System.AddIn.Contract.Collections;

using Microsoft.Rms.AddInViews.V300.PosTransaction;

3. Mark the ReceiptVariableProvider class with the AddIn attribute.

4. Make the ReceiptVariableProvider class public.

5. Declare that ReceiptVariableProvider implements the IReceiptVariableProvider
interface.

6. Use Visual Studio’s Implement Interface right-click menu item to implement the
IReceiptVariableProvider interface.

7. Implement ServiceIdentifier to return “POSTestCompany”.

8. Implement GetValue so that it returns DiscountHelper.TotalDiscount, rounded to two decimal
places, but only if the parameter for the GetValue method is equal to “DiscountAmount” and
DiscountHelper.TotalDiscount is greater than zero.

Update the manifest file
Because you’ve just implemented another view, the implementedViews attribute of the
AddinAssembly tag in the HappyHourDiscount.manifest file needs to specify this new view,
in addition to any existing views.

1. In the Solution Explorerwindow, double-click the HappyHourDiscount.manifest node to open
the HappyHourDiscount.manifest file.

2. Edit the value of the implementedViews attribute of the AddinAssembly tag so that it
includes
Microsoft.Rms.AddInViews.V300.PosTransaction.IReceiptVariableProvider.
When you are done with this step, the value of the implementedViews attribute should be a
comma-separated list of the previously implemented views and the new view, without white
space or line breaks.

3. Save the manifest file.

40 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Build and deploy the add-in
1. Save your work. Then, on the Buildmenu, click Build Solution.

2. Create a folder called HappyHourDiscount in the C:\Program Files\Microsoft Dynamics - Point
of Sale\Addins\ folder, if you haven’t already done so.

3. Open the SDKBootCamp folder on the Desktop and navigate to the
Session6_ReceiptVariables\bin\Debug subfolder. Copy the HappyHourDiscount.dll file and
HappyHourDiscount.pdb file from here to C:\Program Files\Microsoft Dynamics - Point of
Sale\Addins\HappyHourDiscount\.

4. Open the SDKBootCamp folder on the Desktop and navigate to the Session6_ReceiptVariables\
subfolder Copy the HappyHourDiscount.manifest file from here to C:\Program Files\Microsoft
Dynamics - Point of Sale\Addins\HappyHourDiscount\.

5. On the Startmenu, point to All Programs, then point to Accessories, then right-click Command
Prompt, and then click Run as administrator.

6. At the command prompt, type:

%windir%\Microsoft.Net\Framework\V3.5\AddinUtil.exe -rebuild -PipelineRoot:"C:\Program
Files\Microsoft Dynamics - Point of Sale"

Configure Microsoft Dynamics POS
In this section, you will configure Microsoft Dynamics POS to use your new receipt template on
Register 1.

1. Run Microsoft Dynamics POS.

2. In theMicrosoft Dynamics POS (Alpha) application window, switch to Manager View.

Add the HappyHour_40Column.xml receipt template:
1. On the Settingsmenu, point to Register Settings, and then click Receipt Formats.

2. In the Receipt Formats pane, click +Add New Receipt Format.

3. In the name field in the Receipt Format dialog box, type Happy Hour 40 Column.

4. In the Description field, type Tells customers how much they saved.

5. Click the Select Template… button.

6. In the File Center dialog box, click Add File….

7. In the Add File dialog box, navigate to your working project directory, click
HappyHourReceipt_40column.xml, and then click Open.

8. In the File Center dialog box, click HappyhourReceipt_40Column.xml and then click Select.

9. In the Receipt Format dialog box, click Save and Close.

Configure printing on the register:
1. On the Settingsmenu, click Register Settings, and then click View/Edit Register.

2. Double-click Register 1.

3. In the Register 1 dialog box, click Save electronic copies of receipts. Then choose Happy Hour
40 Column from the Journaled receipt format list.

4. Click Save and Close.

5. Exit Microsoft Dynamics POS.

Lab 5: Object model 2 41

Debug the add-in
1. On the Debugmenu, click Start Debugging.

Note
If you get an error message about class library projects needing a debug action, see the
section Debug the add-in, on page 13.

2. Using the Happy Hour UI you have added in previous labs, ensure that it is now Happy Hour and
that at least one department has discountable items.

3. Using POS, process a transaction that has at least one discounted item.

4. Click the Tasks function menu, and then click Find Receipts.

5. Select the receipt for the transaction you just processed.

Notice the You Saved $XX.XX!message at the bottom of the receipt:

42 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

lab 6
Using taxes
In this lab, you will create a configurable tax authority that implements a transportation tax. In
addition, you will create the dialog box that a manager would use to configure this tax and set its
rate.

Create a tax rate configuration dialog
The configuration dialog for configuring the tax authority is straightforward Windows Forms code
with some sensible tax-related member variables and methods. The TaxRateDialog class has four
private variables to store tax-related state: decimal taxRate, string code, string description, and bool
includePreviousTaxes. There are four getter methods that simply return these values: GetTaxRate,
GetDescription, GetCode, and GetIncludePreviousTaxes. It performs basic input validation as well.
You should simply copy TaxRateDialog.cs, TaxRateDialog.resx, and TaxRateDialog.designer.cs from
the reference project into your own.

The tax authority configuration dialog is shown below, with sample input:

Create the project
1. Run Microsoft Visual Studio 2008 as Administrator.

2. On the Filemenu, point to New, and then click Project.

3. In the Project types: pane in the New Project dialog box, expand Visual C#, clickWindows, and
then click Class Library in the Templates: pane.

4. In the Name: text area type, TaxAuthority.

5. Click the Browse button.

Lab 6: Using taxes 43

6. In the Project Location dialog box, navigate to C:\Documents and
Settings\yourusername\Desktop\SDKBootCamp\Session7_TaxAuthorities\Working.

7. Uncheck the Create directory for solution check box.

8. Click OK.

Create the TaxAuthority add-in

Add the necessary references
1. On the Projectmenu, click Add Reference.

2. In the Add Reference dialog box, click the .NET tab.

3. Press and hold the Ctrl key and click System.AddIn, System.AddIn.Contract., and
System.Windows.Forms.

4. Click OK.

5. On the Projectmenu, click Add Reference.

6. In the Add Reference dialog box, click the Browse tab.

7. In the Add Reference dialog box, navigate to C:\Program Files\Microsoft Dynamics - Point of
Sale\AddInViews\.

8. SelectMicrosoft.Rms.AddInViews.V300.dll. Click OK.

9. Right-click on Class1.cs in Solution Explorer and click Rename. Rename Class1.cs to
TaxAuthority.cs. If you are prompted to change all references, click Yes.

10. Open the TaxAuthority.cs file and add the following using statements:

using System.AddIn;

using System.Windows.Forms;

using Microsoft.Rms.AddInViews.V300.PosTransaction;

using Microsoft.Rms.AddInViews.V300.Payments.Core;

Mark the TaxAuthority class with the AddIn attribute
In the TaxAuthority.cs file, add the following line immediately above the definition of the
TaxAuthority class:

[AddIn ("Boot Camp Tax Authority Add-in", Version=”1.0.0.0”)]

Note
TaxAuthoritywas correctly marked as public by default. When you define your own
add-in classes, remember that classes marked with the AddIn attribute must be public.
Visual Studio 2008 does not mark as public classes that you add by using the Projectmenu
or Solution Explorer.

Implement the basic portions of ITaxAuthorityProvider
ITaxAuthorityProvider.GetName simply returns a descriptive string.
ITaxAuthorityProvider.GetAddInId simply returns a GUID.

1. Declare that the TaxAuthority class implements ITaxAuthorityProvider.

2. Mark TaxAuthority public.

44 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

3. Right-click ITaxAuthorityProvider and choose Implement Interface. Then click Implement
Interface.

4. Implement GetName so that it returns “Boot Camp Tax Authority Provider”.

5. Create a private member variable for the TaxAuthority class called taxAuthorityGuid and
assign it to a new Guid.

6. Implement GetAddInId to return taxAuthorityGuid.

About the IDictionaryAddInView addInData parameter
Each of ShowConfigurationDialog, LimitedTaxableAmount, and ComputedTaxableAmount have an
addInData parameter of type IDictionaryAddInView. Each of these three methods is called by POS to
perform tax-related logic. The addInData parameters that are passed to each of these three
methods point to the same IDictionaryAddInView instance, which POS maintains internally. This is
how tax information is shared between these three methods, as well as taxAuthorityUpdater, which
is of the type ITaxAuthorityUpdater. For example, the ShowConfigurationDialog method operates on
addInData by adding keyed information to the dictionary, which ComputedTaxRate can then access
in order to calculate the tax when POS asks for it.

Implement ITaxAuthorityProvider.ShowConfigurationDialog
The ShowConfigurationDialog method gets the current tax rate from the tax authority, if present, and
displays the TaxRateDialog. It then grabs the user’s setting and stores them back into the tax
authority by using IDictionaryAddInView that it was passed.

● Study the TaxAuthority.cs file in the reference project and then either implement this code
on your own or copy it in to your project.

Implement ITaxAuthorityProvider.LimitedTaxableAmount
The LimitedTaxableAmount method is called by POS and simply caps the amount that can be taxed.
It compares the taxable amount it receives to the limitedTaxableAmount variable and returns the
appropriate value. Again, note that it retrieves the tax rate from the dictionary that it receives.

● Add an implementation to your LimitedTaxableAmountmethod that returns the taxable
amount if the taxable amount is less than the limit, but returns the limit otherwise.

Implement ComputedTaxAmount
The ComputedTaxAmount method is called by POS to compute the tax on an item. It retrieves the
tax rate from the dictionary that it receives from POS.

● Implement the ComputedTaxAmountmethod to check for the tax rate and, if the rate
exists, compute the extended tax rate. Otherwise, it should return 0. View the reference
implementation if you get stuck.

Create the manifest file
You will need to create a manifest file that declares that TaxAuthority.dll implements the
ITaxAuthorityProvider interface.

Note
In the alpha version of Microsoft Dynamics POS, an incorrect manifest file can cause your
add-in not to load or create hard-to-find crashing bugs in your add-in.

1. In the Solution Explorer pane in the Visual Studio 2008 application window, right-click the
TaxAuthority node, click Add, then click New Item.

2. In the Categories pane in the Add New Item dialog box, click General.

Lab 6: Using taxes 45

3. In the Templates pane, select Application Manifest File.

4. In the Name text area, type TaxAuthority.manifest. Click Add.

5. Replace the contents of the TaxAuthority.manifest file with the following XML:

<?xml version="1.0" encoding="utf-8" ?>

<AddinManifest>

<AddinAssembly

assembly="TaxAuthority.dll"

implementedViews="Microsoft.Rms.AddInViews.V300.PosTransaction.ITaxAut
horityProvider"

namedPermissionSet="FullTrust"

/>

</AddinManifest>

Build and deploy the add-in
1. Save your work. Then, on the Buildmenu, click Build Solution.

2. Create a folder called TaxAuthority in the C:\Program Files\Microsoft Dynamics - Point of
Sale\Addins\ folder, if you haven’t already done so.

3. Open the SDKBootCamp folder on the Desktop and navigate to the
Session7_TaxAuthorities\TaxAuthority\bin\Debug subfolder. Copy the TaxAuthority.dll file and
TaxAuthority.pdb file from here to C:\Program Files\Microsoft Dynamics - Point of
Sale\Addins\HappyHourDiscount\.

4. Open the SDKBootCamp folder on the Desktop and navigate to the
Session6_ReceiptVariables\TaxAuthority subfolder Copy the TaxAuthority.manifest file from
here to C:\Program Files\Microsoft Dynamics - Point of Sale\Addins\TaxAuthority\.

5. On the Startmenu, point to All Programs, then point to Accessories, then right-click Command
Prompt, and then click Run as administrator.

6. At the command prompt, type:

%windir%\Microsoft.Net\Framework\V3.5\AddinUtil.exe -rebuild -PipelineRoot:"C:\Program
Files\Microsoft Dynamics - Point of Sale"

Configure Microsoft Dynamics POS
1. Run Microsoft Dynamics POS.

2. Switch to Manager View.

Add the tax authority:
1. On the Settingsmenu, point to Store Settings, and then click Tax Authorities.

2. In the Tax Authorities pane, click +Add a New Tax Authority.

3. In the Select Tax Authority Provider dialog box, select Boot Camp Tax Authority Provider. Click
OK.

4. In the Tax Authority Settings dialog box, enter 3.0 in the Rate field, TT in the Code field, and
Transportation Tax in the Description field. Click OK.

46 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Note
The tax rate for this tax authority will not show up in the Tax Rate (%) column of the Tax
Authorities pane.

Include the tax in the calculation:
1. On the Settingsmenu, click Store Settings, and then click Sales Taxes.

2. Double-click TAX.

3. In the Sales Tax dialog box, find the first available blank Tax Authority in the Included tax
authorities group.

4. Choose the TT tax authority for the tax authority located in step 3, and check the corresponding
Receipt checkbox.

5. Click Save and Close.

6. Exit Microsoft Dynamics POS.

Debug the add-in
1. On the Projectmenu, click TaxAuthority Properties.

2. On the TaxAuthority, click the Debug tab.

3. In the Start Action radio button group, select Start external program:.

4. In the Start external program: text area, type:

C:\Program Files\Microsoft Dynamics - Point of Sale\pos.exe

5. In theWorking directory: text area in the Start Options group, type:

C:\Program Files\Microsoft Dynamics - Point of Sale\

6. Close the TaxAuthority tab.

7. On the Debugmenu, click Start Debugging.

8. Using POS, process a transaction that has at least one item.

Notice the Transportation Tax item near the bottom of the receipt in Microsoft OneNote 2007.

Lab 6: Using taxes 47

48 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

lab 7
Creating custom reports
With Microsoft Dynamics POS and the powerful Microsoft SQL Server reporting services, you can
create sophisticated custom reports using a variety of report layouts and tools.

In this lab, you will use the SQL Server Business Intelligence Development Studio to create simple
table and pie-chart reports, and then use File Center in Microsoft Dynamics POS to make the reports
available to users.

The following image shows one of the reports you will create in this lab. It gives you an idea of the
attractive customizations that are possible.

Setup
Since the reports in this lab reference data in the HappyHour table, process a few transactions in
Microsoft Dynamics POS to make sure there are Happy Hour transactions in the database.

1. In Microsoft Dynamics POS, check the status bar in POS View to make sure Happy Hour is
active.

Note
If you need to start Happy Hour, switch to Manager View, click Happy Hour Discount on the
Inventory menu, and then change the start and end times as needed.

2. Press F2 (Items), press 4 (By Item Number), and then add to the transaction an item that will
receive the Happy Hour discount.

Lab 7: Creating custom reports 49

For example, if you included the Baked Goods department in the discount, add a bagel, cookie, or
muffin to the transaction.

3. Press F12 (Total), and then press the plus (+) sign.

Create a report project
1. Open SQL Server Business Intelligence Development Studio.

On the Start menu, point to Programs or All Programs, point to Microsoft SQL Server 2005, and then
click SQL Server Business Intelligence Development Studio.

Note
SQL Server Business Intelligence Development Studio is a plug-in for Visual Studio. To make
it available on the Start menu, you must first enable IIS and ASP.NET and install the SQL
Server reporting services (an optional component in SQL Server Setup).

2. In the New Project dialog box, select Report Server Project, type a name and location for the
project, and then click OK.

Create a custom table report

Add a report to the project
1. In Solution Explorer, right-click Reports, point to Add, and then click New Item.

50 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

2. In the Add New Item dialog box, select Report under Templates, type “Happy Hour Sales
Report.rdl” in the Name box, and then click Add.

Specify the dataset
3. In the Dataset box, select New Dataset.

4. In the Data Source dialog box, type “Swordfish” in the Name box, and then click Edit.

5. In the Connection Properties dialog box, type “(local)” in the Server name box, type
“MSPOSSample” in the Select or enter a database name box, click Test Connection, and then, if
the test was successful, click OK.

Lab 7: Creating custom reports 51

6. Back in the Data Source dialog box, click OK.

7. Click the Edit Selected Dataset button on the toolbar.

8. In the Dataset dialog box, type “HappyHour” in the Name box, type “select * from happyhour” in
the Query string box, and then click OK.

9. Run the HappyHour dataset to make sure data is returned.

On the toolbar in Visual Studio, click the Run button.

52 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Design the report
10. Switch to the Layout tab, and then, on the View menu, click Toolbox.

11. From the Report Items list in the Toolbox, drag the Table item into the body of the report.

12. On the View menu, click Datasets, and then, one at a time, drag ItemLookupCode,
DiscountedPrice, and SoldTime into the cells in the header row of the table.

The query for each column will be filled into the detail row automatically.

13. Add a total to the report by typing “=sum(Fields!DiscountedPrice.Value)” into the footer cell in
the Discounted Price column.

Lab 7: Creating custom reports 53

14. Switch to the Preview tab to see how the report looks so far, and then switch back to the Layout
tab to begin formatting the report.

15. To add currency formatting to the prices in the report, right-click the Discounted Price query,
and then click Properties.

16. In the Choose Format dialog box, select Currency, and then click OK.

17. To add date formatting to the Sold Time values, repeat Steps 15 and 16, selecting Date in the
Choose Format dialog box.

18. To add a title to the report, add a textbox above the table, type the title, and then apply any
desired formatting. You can also add a label to the total.

19. Switch to the Preview tab again and make sure you are satisfied with how the report looks.

54 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

20. On the File menu, click Save.

Create a pie-chart report
The steps for creating a pie-chart report are very similar to those for creating a table report.

Add a report to the project
1. In Solution Explorer in Visual Studio, right-click Reports, point to Add, and then click New Item.

2. In the Add New Item dialog box, select Report under Templates, type “Happy Hour Sales by
Department.rdl” in the Name box, and then click Add.

Specify the dataset
3. In the Dataset box, select New Dataset.

4. In the Data Source dialog box, type “Swordfish” in the Name box, and then click Edit.

5. In the Connection Properties dialog box, type “(local)” in the Server name box, type
“MSPOSSample” in the Select or enter a database name box, click Test Connection, and then, if
the test was successful, click OK.

6. Back in the Data Source dialog box, click OK.

7. Click the Edit Selected Dataset button on the toolbar.

8. In the Dataset dialog box, in the Name box, type “HappyHourByDepartment”.

9. In the Query string box, type the following:

Select department.name as 'Department Name', sum(HappyHour.DiscountedPrice) as 'Total

Discount'

From Department right outer JOIN

Lab 7: Creating custom reports 55

Item ON Department.ID = Item.DepartmentID RIGHT OUTER JOIN

HappyHour ON Item.itemlookupcode = HappyHour.itemlookupcode

Where happyhour.soldtime >= @TransactionDate and happyhour.soldtime < DateAdd(day, 1,

@TransactionDate)

Group by department.name

10. Run the HappyHourByDepartment dataset, entering today’s date to make sure data is returned.

On the toolbar in Visual Studio, click the Run button.

Design the report
11. Switch to the Layout tab, and then, on the View menu, click Toolbox.

12. From the Report Items list in the Toolbox, drag the Chart item into the body of the report.

13. On the View menu, click Datasets.

14. Drag Department_Name into the Drop category fields here region of the report, and then drag
Total_Discount into the Drop data fields here region.

15. Right-click on the chart, point to Chart Type, point to Pie, and then click Simple Pie.

16. Right-click on the chart, and then click Properties.

17. On the General tab, type “Happy Hour Sales by Department” in the Title box, and then select
Earth Tones in the Palette box.

18. On the 3D Effects tab, select Display chart with 3-D visual effects, and then click OK.

19. On the Report menu, click Report Parameters, and then take the following actions:

a. In the Data type box, select DateTime.

b. In the Prompt box, type “Transaction Data”.

c. Under Default values, select Non-queried and enter “=Today”.

20. Click OK.

21. Switch to the Preview tab to see how the report looks so far.

22. Switch to the Layout tab to continue customizing the report

23. Switch to the Preview tab again and make sure you are satisfied with how the report looks.

24. On the File menu, click Save.

56 Developer Session labs

Microsoft Dynamics POS Alpha SDK Boot Camp

Make a custom report available in Microsoft Dynamics POS
You can make the custom report available in Microsoft Dynamics POS simply by adding it to File
Center. And because the custom report uses a data source name instead of a specific database
name to connect to the store database, the same report .rdl file can be used in more than one store,
without modification.

1. In Microsoft Dynamics POS, switch to Manager View, and then, on the Tools menu, click File
Center.

2. In the folder tree, expand the Stingray Reports folder, and then click Miscellaneous.

3. Click Add File, browse to the Happy Hour Sales Report.rdl file, select it, and then click Open.

Note
Browse to the location where you previously saved the file.

4. Repeat Step 4 for the Happy Hour Sales by Department.rdl file.

5. Click Close.

6. In the navigation pane, expand the Reports folder, and then click Alpha.

The Happy Hour Sales and Happy Hour Sales by Department reports appear in the list.

Lab 7: Creating custom reports 57

7. Double-click the report name to view the report.

58 Developer Session labs

